
CHAPTER 13

13.1. The parameters of a certain transmission line operating at 6 × 108 rad/s are L = 0.4 µH/m, C =
40 pF/m, G = 80 mS/m, and R = 20 �/m.

a) Find γ , α, β, λ, and Z0: We use

γ =
√

ZY =
√

(R + jωL)(G + jωC)

=
√

[20 + j (6 × 108)(0.4 × 10−6)][80 × 10−3 + j (6 × 108)(40 × 10−12)]

= 2.8 + j3.5 m−1 = α + jβ

Therefore, α = 2.8 Np/m, β = 3.5 rad/m, and λ = 2π/β = 1.8 m. Finally,

Z0 =
√

Z

Y
=

√
R + jωL

G + jωC
=

√
20 + j2.4 × 102

80 × 10−3 + j2.4 × 10−2 = 44 + j30 �

b) If a voltage wave travels 20 m down the line, what percentage of the original amplitude remains,
and by how many degrees is it phase shifted? First,

V20

V0
= e−αL = e−(2.8)(20) = 4.8 × 10−25 or 4.8 × 10−23 percent!

Then the phase shift is given by βL, which in degrees becomes

φ = βL

(
360

2π

)
= (3.5)(20)

(
360

2π

)
= 4.0 × 103 degrees

13.2. A lossless transmission line with Z0 = 60 � is being operated at 60 MHz. The velocity on the line is
3 × 108 m/s. If the line is short-circuited at z = 0, find Zin at:

a) z = −1m: We use the expression for input impedance (Eq. 12), under the conditions Z2 = 60
and Z3 = 0:

Zin = Z2

[
Z3 cos(βl) + jZ2 sin(βl)

Z2 cos(βl) + jZ3 sin(βl)

]
= j60 tan(βl)

where l = −z, and where the phase constant is β = 2πc/f = 2π(3 × 108)/(6 × 107) =
(2/5)π rad/m. Now, with z = −1 (l = 1), we find Zin = j60 tan(2π/5) = j184.6 �.

b) z = −2 m: Zin = j60 tan(4π/5) = −j43.6 �

c) z = −2.5 m: Zin = j60 tan(5π/5) = 0

d) z = −1.25 m: Zin = j60 tan(π/2) = j∞ � (open circuit)

13.3. The characteristic impedance of a certain lossless transmission line is 72 �. If L = 0.5 µH/m, find:
a) C: Use Z0 = √

L/C, or

C = L

Z2
0

= 5 × 10−7

(72)2 = 9.6 × 10−11 F/m = 96 pF/m
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13.3b) vp:

vp = 1√
LC

= 1√
(5 × 10−7)(9.6 × 10−11)

= 1.44 × 108 m/s

c) β if f = 80 MHz:

β = ω
√

LC = 2π × 80 × 106

1.44 × 108 = 3.5 rad/m

d) The line is terminated with a load of 60 �. Find 	 and s:

	 = 60 − 72

60 + 72
= −0.09 s = 1 + |	|

1 − |	| = 1 + .09

1 − .09
= 1.2

13.4. A lossless transmission line having Z0 = 120� is operating at ω = 5 × 108 rad/s. If the velocity on
the line is 2.4 × 108 m/s, find:

a) L: With Z0 = √
L/C and v = 1/

√
LC, we find L = Z0/v = 120/2.4 × 108 = 0.50 µH/m.

b) C: Use Z0v = √
L/C/

√
LC ⇒ C = 1/(Z0v) = [120(2.4 × 108)]−1 = 35 pF/m.

c) Let ZL be represented by an inductance of 0.6 µH in series with a 100-� resistance. Find 	 and
s: The inductive impedance is jωL = j (5 × 108)(0.6 × 10−6) = j300. So the load impedance
is ZL = 100 + j300 �. Now

	 = ZL − Z0

ZL + Z0
= 100 + j300 − 120

100 + j300 + 120
= 0.62 + j0.52 = 0.808� 40◦

Then

s = 1 + |	|
1 − |	| = 1 + 0.808

1 − 0.808
= 9.4

13.5. Two characteristics of a certain lossless transmission line are Z0 = 50 � and γ = 0 + j0.2π m−1 at
f = 60 MHz.

a) Find L and C for the line: We have β = 0.2π = ω
√

LC and Z0 = 50 = √
L/C. Thus

β

Z0
= ωC ⇒ C = β

ωZ0
= 0.2π

(2π × 60 × 106)(50)
= 1

3
× 1010 = 33.3 pF/m

Then L = CZ2
0 = (33.3 × 10−12)(50)2 = 8.33 × 10−8 H/m = 83.3 nH/m.

b) A load, ZL = 60 + j80 � is located at z = 0. What is the shortest distance from the load to a
point at which Zin = Rin + j0? I will do this using two different methods:

The Hard Way: We use the general expression

Zin = Z0

[
ZL + jZ0 tan(βl)

Z0 + jZL tan(βl)

]

We can then normalize the impedances with respect to Z0 and write

zin = Zin

Z0
=

[
(ZL/Z0) + j tan(βl)

1 + j (ZL/Z0) tan(βl)

]
=

[
zL + j tan(βl)

1 + jzL tan(βl)

]

where zL = (60 + j80)/50 = 1.2 + j1.6.
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13.5b. (continued) Using this, and defining x = tan(βl), we find

zin =
[

1.2 + j (1.6 + x)

(1 − 1.6x) + j1.2x

] [
(1 − 1.6x) − j1.2x

(1 − 1.6x) − j1.2x

]

The second bracketed term is a factor of one, composed of the complex conjugate of the denomi-
nator of the first term, divided by itself. Carrying out this product, we find

zin =
[

1.2(1 − 1.6x) + 1.2x(1.6 + x) − j [(1.2)2x − (1.6 + x)(1 − 1.6x)]

(1 − 1.6x)2 + (1.2)2x2

]

We require the imaginary part to be zero. Thus

(1.2)2x − (1.6 + x)(1 − 1.6x) = 0 ⇒ 1.6x2 + 3x − 1.6 = 0

So

x = tan(βl) = −3 ±
√

9 + 4(1.6)2

2(1.6)
= (.433, −2.31)

We take the positive root, and find

βl = tan−1(.433) = 0.409 ⇒ l = 0.409

0.2π
= 0.65 m = 65 cm

The Easy Way: We find

	 = 60 + j80 − 50

60 + j80 + 50
= 0.405 + j0.432 = 0.59� 0.818

Thus φ = 0.818 rad, and we use the fact that the input impedance will be purely real at the location
of a voltage minimum or maximum. The first voltage maximum will occur at a distance in front
of the load given by

zmax = φ

2β
= 0.818

2(0.2π)
= 0.65 m

13.6. The propagation constant of a lossy transmission line is 1 + j2 m−1, and its characteristic impedance
is 20 + j0 � at ω = 1 Mrad/s. Find L, C, R, and G for the line: Begin with

Z0 =
√

R + jωL

G + jωL
= 20 ⇒ R + jωL = 400(G + jωC) (1)

Then
γ 2 = (R + jωL)(G + jωC) = (1 + j2)2 ⇒ 400(G + jωC)2 = (1 + j2)2 (2)

where (1) has been used. Eq. 2 now becomes G + jωC = (1 + j2)/20. Equating real and imaginary
parts leads to G = .05 S/m and C = 1/(10ω) = 10−7 = 0.1 µF/m.
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13.6. (continued) Now, (1) becomes

20 =
√

R + jωL

1 + j2

√
20 ⇒ 20 = R + jωL

1 + j2
⇒ 20 + j40 = R + jωL

Again, equating real and imaginary parts leads to R = 20 �/m and L = 40/ω = 40 µH/m.

13.7. The dimensions of the outer conductor of a coaxial cable are b and c, c > b. Assume σ = σc and let
µ = µ0. Find the magnetic energy stored per unit length in the region b < r < c for a uniformly
distributed total current I flowing in opposite directions in the inner and outer conductors: First, from
the inner conductor, the magnetic field will be

H1 = I

2πρ
aφ

The contribution from the outer conductor to the magnetic field within that conductor is found from
Ampere’s circuital law to be:

H2 = − I

2πρ

ρ2 − b2

c2 − b2 aφ

The total magnetic field within the outer conductor will be the sum of the two fields, or

HT = H1 + H2 = I

2πρ

[
c2 − ρ2

c2 − b2

]
aφ

The energy density is

wm = 1

2
µ0H

2
T = µ0I

2

8π2

[
c2 − ρ2

c2 − b2

]2

J/m3

The stored energy per unit length in the outer conductor is now

Wm =
∫ 1

0

∫ 2π

0

∫ c

b

µ0I
2

8π2

[
c2 − ρ2

c2 − b2

]2

ρ dρ dφ dz = µ0I
2

4π(c2 − b2)2

∫ c

b

[
c4

ρ
− 2c2ρ + ρ3

]
dρ

= µ0I
2

4π

[
c4

(c2 − b2)2 ln
( c

b

)
+ b2 − (3/4)c2

(c2 − b2)

]
J

13.8. The conductors of a coaxial transmission line are copper (σc = 5.8 × 10−7 S/m) and the dielectric is
polyethylene (ε′

R = 2.26, σ/ωε′ = 0.0002). If the inner radius of the outer conductor is 4 mm, find
the radius of the inner conductor so that (assuming a lossless line):

a) Z0 = 50 �: Use

Z0 = 1

2π

√
µ

ε′ ln

(
b

a

)
= 50 ⇒ ln

(
b

a

)
=

2π

√
ε′
R(50)

377
= 1.25

Thus b/a = e1.25 = 3.50, or a = 4/3.50 = 1.142 mm
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13.8b. C = 100 pF/m: Begin with

C = 2πε′

ln(b/a)
= 10−10 ⇒ ln

(
b

a

)
= 2π(2.26)(8.854 × 10−2) = 1.257

So b/a = e1.257 = 3.51, or a = 4/3.51 = 1.138 mm.

c) L = 0.2 µH/m: Use

L = µ0

2π
ln

(
b

a

)
= 0.2 × 10−6 ⇒ ln

(
b

a

)
= 2π(0.2 × 10−6)

4π × 10−7 = 1

Thus b/a = e1 = 2.718, or a = b/2.718 = 1.472 mm.

13.9. Two aluminum-clad steel conductors are used to construct a two-wire transmission line. Let σAl =
3.8×107 S/m, σSt = 5×106 S/m, and µSt = 100 µH/m. The radius of the steel wire is 0.5 in., and the
aluminum coating is 0.05 in. thick. The dielectric is air, and the center-to-center wire separation is 4 in.
Find C, L, G, and R for the line at 10 MHz: The first question is whether we are in the high frequency
or low frequency regime. Calculation of the skin depth, δ, will tell us. We have, for aluminum,

δ = 1√
πf µ0σAl

= 1√
π(107)(4π × 10−7)(3.8 × 107)

= 2.58 × 10−5 m

so we are clearly in the high frequency regime, where uniform current distributions cannot be assumed.
Furthermore, the skin depth is considerably less than the aluminum layer thickness, so the bulk of the
current resides in the aluminum, and we may neglect the steel. Assuming solid aluminum wires of
radius a = 0.5 + 0.05 = 0.55 in = 0.014 m, the resistance of the two-wire line is now

R = 1

πaδσAl

= 1

π(.014)(2.58 × 10−5)(3.8 × 107)
= 0.023 �/m

Next, since the dielectric is air, no leakage will occur from wire to wire, and so G = 0 mho/m. Now
the capacitance will be

C = πε0

cosh−1(d/2a)
= π × 8.85 × 10−12

cosh−1 (4/(2 × 0.55))
= 1.42 × 10−11 F/m = 14.2 pF/m

Finally, the inductance per unit length will be

L = µ0

π
cosh(d/2a) = 4π × 10−7

π
cosh (4/(2 × 0.55)) = 7.86 × 10−7 H/m = 0.786 µH/m

217



13.10. Each conductor of a two-wire transmission line has a radius of 0.5mm; their center-to-center distance
is 0.8cm. Let f = 150MHz and assume σ = 0 and σc → ∞ (note error in problem statement). Find
the dielectric constant of the insulating medium if

a) Z0 = 300 �: Use

300 = 1

π

√
µ0

ε′
Rε0

cosh−1
(

d

2a

)
⇒

√
ε′
R = 120π

300π
cosh−1

(
8

2(.5)

)
= 1.107 ⇒ ε′

R = 1.23

b) C = 20 pF/m: Use

20 × 10−12 = πε′

cosh−1(d/2a)
⇒ ε′

R = 20 × 10−12

πε0
cosh−1(8) = 1.99

c) vp = 2.6 × 108 m/s:

vp = 1√
LC

= 1√
µ0ε0ε

′
R

= c√
ε′
R

⇒ ε′
R =

(
3.0 × 108

2.6 × 108

)2

= 1.33

13.11. Pertinent dimensions for the transmission line shown in Fig. 13.4 are b = 3 mm, and d = 0.2 mm.
The conductors and the dielectric are non-magnetic.

a) If the characteristic impedance of the line is 15 �, find ε′
R: We use

Z0 =
√

µ

ε′

(
d

b

)
= 15 ⇒ ε′

R =
(

377

15

)2
.04

9
= 2.8

b) Assume copper conductors and operation at 2 × 108 rad/s. If RC = GL, determine the loss
tangent of the dielectric: For copper, σc = 5.8 × 107 S/m, and the skin depth is

δ =
√

2

ωµ0σc

=
√

2

(2 × 108)(4π × 10−7)(5.8 × 107)
= 1.2 × 10−5 m

Then

R = 2

σcδb
= 2

(5.8 × 107)(1.2 × 10−5)(.003)
= 0.98 �/m

Now

C = ε′b
d

= (2.8)(8.85 × 10−12)(3)

0.2
= 3.7 × 10−10 F/m

and

L = µ0d

b
= (4π × 10−7)(0.2)

3
= 8.4 × 10−8 H/m

Then, with RC = GL,

G = RC

L
= (.98)(3.7 × 10−10)

(8.4 × 10−8)
= 4.4 × 10−3 mho/m = σdb

d

Thus σd = (4.4 × 10−3)(0.2/3) = 2.9 × 10−4 S/m. The loss tangent is

l.t. = σd

ωε′ = 2.9 × 10−4

(2 × 108)(2.8)(8.85 × 10−12)
= 5.85 × 10−2
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13.12. A transmission line constructed from perfect conductors and an air dielectric is to have a maximum
dimension of 8mm for its cross-section. The line is to be used at high frequencies. Specify its dimensions
if it is:

a) a two-wire line with Z0 = 300 �: With the maximum dimension of 8mm, we have, using (27):

Z0 = 1

π

√
µ

ε′ cosh−1
(

8 − 2a

2a

)
= 300 ⇒ 8 − 2a

2a
= cosh

(
300π

120π

)
= 6.13

Solve for a to find a = 0.56 mm. Then d = 8 − 2a = 6.88 mm.

b) a planar line with Z0 = 15 �: In this case our maximum dimension dictates that
√

d2 + b2 = 8.
So, using (34), we write

Z0 =
√

µ

ε′

√
64 − b2

b
= 15 ⇒

√
64 − b2 = 15

377
b

Solving, we find b = 7.99 mm and d = 0.32 mm.

c) a 72 � coax having a zero-thickness outer conductor: With a zero-thickness outer conductor, we
note that the outer radius is b = 8/2 = 4mm. Using (18), we write

Z0 = 1

2π

√
µ

ε′ ln

(
b

a

)
= 72 ⇒ ln

(
b

a

)
= 2π(72)

120π
= 1.20 ⇒ a = be−1.20 = 4e−1.20 = 1.2

Summarizing, a = 1.2 mm and b = 4 mm.

13.13. The incident voltage wave on a certain lossless transmission line for which Z0 = 50 � and vp = 2×108

m/s is V +(z, t) = 200 cos(ωt − πz) V.
a) Find ω: We know β = π = ω/vp, so ω = π(2 × 108) = 6.28 × 108 rad/s.
b) Find I+(z, t): Since Z0 is real, we may write

I+(z, t) = V +(z, t)

Z0
= 4 cos(ωt − πz) A

The section of line for which z > 0 is replaced by a load ZL = 50 + j30 � at z = 0. Find
c) 	L: This will be

	L = 50 + j30 − 50

50 + j30 + 50
= .0825 + j0.275 = 0.287� 1.28 rad

d) V −
s (z) = 	LV +

s (z)ej2βz = 0.287(200)ejπzej1.28 = 57.5ej (πz+1.28)

e) Vs at z = −2.2 m:

Vs(−2.2) = V +
s (−2.2) + V −

s (−2.2) = 200ej2.2π + 57.5e−j (2.2π−1.28) = 257.5ej0.63

= 257.5� 36◦
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13.14. Coaxial lines 1 and 2 have the following parameters: µ1 = µ2 = µ0, σ1 = σ2 = 0, ε′
R1 = 2.25,

ε′
R2 = 4, a1 = a2 = 0.8mm, b1 = 6mm, b2 = 3mm, ZL2 = Z02, and ZL1 is Zin2.
a) Find Z01 and Z02. For either line, we have

Z0 = 1

2π

√
µ

ε′ ln

(
b

a

)
= 377

2π

√
ε′
R

ln

(
b

a

)
leading to

Z01 = 377

2π
√

2.25
ln

(
6

.8

)
= 80.6 � and Z02 = 377

2π
√

4
ln

(
3

.8

)
= 39.7 �

b) Find s on line 1: Line 1’s load is line 2’s input impedance (they are connected end-to-end).
Also, since line 2 is matched, its input impedance is just it’s characteristic impedance. Therefore,
ZL1 = Zin2 = Z02. The reflection coefficient encountered by waves incident on ZL1 from line 1
can now be found, along with the standing wave ratio:

	12 = 39.7 − 80.6

39.7 + 80.6
= −0.34 ⇒ s = 1 + .34

1 − .34
= 2.03

c) If a 20cm length of line 1 is inserted immediately in front of ZL2 and f = 300MHz, find s on line 2:
The line 1 length now has a load impedance of 39.7 � and it is 20cm long. We need to find its input
impedance. At 300 MHz, the free space wavelength is 1m. In line 1, having a dielectric constant of
2.25, the wavelength is λ = 1m/

√
2.25 = 0.67m. Therefore βl = 2πl/λ = 2π(20)/(67) = 1.87.

We now find the input impedance for this situation through

Zin = Z01

[
ZL2 cos(βl) + jZ01 sin(βl)

Z01 cos(βl) + jZL2 sin(βl)

]
= 80.6

[
39.7 cos(1.87) + j80.6 sin(1.87)

80.6 cos(1.87) + j39.7 sin(1.87)

]
= 128.7 − j55.8 = 140.3� − 23.4◦

Now for waves incident at the line 1 - line 2 junction from line 2, the reflection coefficient will be

	21 = Zin − Z02

Zin + Z02
= 128.7 − 39.7 − j55.8

128.7 + 39.7 − j55.8
= 0.58 − j0.14 = 0.59� − 13.7◦

The standing wave ratio is now

s = 1 + .59

1 − .59
= 3.9
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13.15. For the transmission line represented in Fig. 13.26, find Vs,out if f =:
a) 60 Hz: At this frequency,

β = ω

vp

= 2π × 60

(2/3)(3 × 108)
= 1.9 × 10−6 rad/m So βl = (1.9 × 10−6)(80) = 1.5 × 10−4 << 1

The line is thus essentially a lumped circuit, where Zin
.= ZL = 80 �. Therefore

Vs,out = 120

[
80

12 + 80

]
= 104 V

b) 500 kHz: In this case

β = 2π × 5 × 105

2 × 108 = 1.57 × 10−2 rad/s So βl = 1.57 × 10−2(80) = 1.26 rad

Now

Zin = 50

[
80 cos(1.26) + j50 sin(1.26)

50 cos(1.26) + j80 sin(1.26)

]
= 33.17 − j9.57 = 34.5� − .28

The equivalent circuit is now the voltage source driving the series combination of Zin and the 12
ohm resistor. The voltage across Zin is thus

Vin = 120

[
Zin

12 + Zin

]
= 120

[
33.17 − j9.57

12 + 33.17 − j9.57

]
= 89.5 − j6.46 = 89.7� − .071

The voltage at the line input is now the sum of the forward and backward-propagating waves just
to the right of the input. We reference the load at z = 0, and so the input is located at z = −80 m.
In general we write Vin = V +

0 e−jβz + V −
0 ejβz, where

V −
0 = 	LV +

0 = 80 − 50

80 + 50
V +

0 = 3

13
V +

0

At z = −80 m we thus have

Vin = V +
0

[
ej1.26 + 3

13
e−j1.26

]
⇒ V +

0 = 89.5 − j6.46

ej1.26 + (3/13)e−j1.26 = 42.7 − j100 V

Now

Vs,out = V +
0 (1 + 	L) = (42.7 − j100)(1 + 3/(13)) = 134 � − 1.17 rad = 52.6 − j123 V

As a check, we can evaluate the average power reaching the load:

Pavg,L = 1

2

|Vs,out |2
RL

= 1

2

(134)2

80
= 112 W

This must be the same power that occurs at the input impedance:

Pavg,in = 1

2
Re

{
VinI

∗
in

} = 1

2
Re {(89.5 − j6.46)(2.54 + j0.54)} = 112 W

where Iin = Vin/Zin = (89.5 − j6.46)/(33.17 − j9.57) = 2.54 + j0.54.
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13.16. A 300 ohm transmission line is 0.8 m long and is terminated with a short circuit. The line is operating
in air with a wavelength of 0.3 m (incorrectly stated as 0.8 m in early printings) and is lossless.

a) If the input voltage amplitude is 10V, what is the maximum voltage amplitude at any point on the
line? The net voltage anywhere on the line is the sum of the forward and backward wave voltages,
and is written as V (z) = V +

0 e−jβz + V −
0 ejβz. Since the line is short-circuited at the load end

(z = 0), we have V −
0 = −V +

0 , and so

V (z) = V +
0

(
e−jβz − ejβz

)
= −2jV +

0 sin(jβz)

We now evaluate the voltage at the input, where z = −0.8m, and λ = 0.3m.

Vin = −2jV +
0 sin

(
2π(−0.8)

0.3

)
= −j1.73V +

0

The magnitude of Vin is given as 10V, so we find V +
0 = 10/1.73 = 5.78V. The maximum voltage

amplitude on the line will be twice this value (where the sine function is unity),
so |V |max = 2(5.78) = 11.56 V.

b) What is the current amplitude in the short circuit? At the shorted end, the current will be

IL = V +
0

Z0
− V −

0

Z0
= 2V +

0

Z0
= 11.56

300
= 0.039A = 39 mA

13.17. Determine the average power absorbed by each resistor in Fig. 13.27: The problem is made easier by first
converting the current source/100 ohm resistor combination to its Thevenin equivalent. This is a 50 � 0
V voltage source in series with the 100 ohm resistor. The next step is to determine the input impedance
of the 2.6λ length line, terminated by the 25 ohm resistor: We use βl = (2π/λ)(2.6λ) = 16.33 rad.
This value, modulo 2π is (by subtracting 2π twice) 3.77 rad. Now

Zin = 50

[
25 cos(3.77) + j50 sin(3.77)

50 cos(3.77) + j25 sin(3.77)

]
= 33.7 + j24.0

The equivalent circuit now consists of the series combination of 50 V source, 100 ohm resistor, and
Zin, as calculated above. The current in this circuit will be

I = 50

100 + 33.7 + j24.0
= 0.368� − .178

The power dissipated by the 25 ohm resistor is the same as the power dissipated by the real part of Zin,
or

P25 = P33.7 = 1

2
|I |2R = 1

2
(.368)2(33.7) = 2.28 W

To find the power dissipated by the 100 ohm resistor, we need to return to the Norton configuration,
with the original current source in parallel with the 100 ohm resistor, and in parallel with Zin. The
voltage across the 100 ohm resistor will be the same as that across Zin, or
V = IZin = (.368 � − .178)(33.7 + j24.0) = 15.2 � 0.44. The power dissipated by the 100 ohm
resistor is now

P100 = 1

2

|V |2
R

= 1

2

(15.2)2

100
= 1.16 W
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13.18 The line shown in Fig. 13.28 is lossless. Find s on both sections 1 and 2: For section 2, we consider
the propagation of one forward and one backward wave, comprising the superposition of all reflected
waves from both ends of the section. The ratio of the backward to the forward wave amplitude is given
by the reflection coefficient at the load, which is

	L = 50 − j100 − 50

50 − j100 + 50
= −j

1 − j
= 1

2
(1 − j)

Then |	L| = (1/2)
√

(1 − j)(1 + j) = 1/
√

2. Finally

s2 = 1 + |	L|
1 − |	L| = 1 + 1/

√
2

1 − 1/
√

2
= 5.83

For section 1, we need the reflection coefficient at the junction (location of the 100 � resistor) seen by
waves incident from section 1: We first need the input impedance of the .2λ length of section 2:

Zin2 = 50

[
(50 − j100) cos(β2l) + j50 sin(β2l)

50 cos(β2l) + j (50 − j100) sin(β2l)

]
= 50

[
(1 − j2)(0.309) + j0.951

0.309 + j (1 − j2)(0.951)

]
= 8.63 + j3.82 = 9.44 � 0.42 rad

Now, this impedance is in parallel with the 100� resistor, leading to a net junction impedance found by

1

ZinT

= 1

100
+ 1

8.63 + j3.82
⇒ ZinT = 8.06 + j3.23 = 8.69� 0.38 rad

The reflection coefficient will be

	j = ZinT − 50

ZinT + 50
= −0.717 + j0.096 = 0.723� 3.0 rad

and the standing wave ratio is s1 = (1 + 0.723)/(1 − 0.723) = 6.22.

13.19. A lossless transmission line is 50 cm in length and operating at a frequency of 100 MHz. The line
parameters are L = 0.2 µH/m and C = 80 pF/m. The line is terminated by a short circuit at z = 0,
and there is a load, ZL = 50 + j20 ohms across the line at location z = −20 cm. What average power
is delivered to ZL if the input voltage is 100 � 0 V? With the given capacitance and inductance, we find

Z0 =
√

L

C
=

√
2 × 10−7

8 × 10−11 = 50 �

and

vp = 1√
LC

= 1√
(2 × 10−7)(9 × 10−11)

= 2.5 × 108 m/s

Now β = ω/vp = (2π × 108)/(2.5 × 108) = 2.5 rad/s. We then find the input impedance to the
shorted line section of length 20 cm (putting this impedance at the location of ZL, so we can combine
them): We have βl = (2.5)(0.2) = 0.50, and so, using the input impedance formula with a zero load
impedance, we find Zin1 = j50 tan(0.50) = j27.4 ohms.
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13.19 (continued) Now, at the location of ZL, the net impedance there is the parallel combination of ZL and
Zin1: Znet = (50+ j20)||(j27.4) = 7.93+ j19.9. We now transform this impedance to the line input,
30 cm to the left, obtaining (with βl = (2.5)(.3) = 0.75):

Zin2 = 50

[
(7.93 + j19.9) cos(.75) + j50 sin(.75)

50 cos(.75) + j (7.93 + j19.9) sin(.75)

]
= 35.9 + j98.0 = 104.3� 1.22

The power delivered to ZL is the same as the power delivered to Zin2: The current magnitude is
|I | = (100)/(104.3) = 0.96 A. So finally,

P = 1

2
|I |2R = 1

2
(0.96)2(35.9) = 16.5 W

13.20. This problem was originally posed incorrectly. The corrected version should have an inductor in the
input circuit instead of a capacitor. I will proceed with this replacement understood, and will change
the wording as appropriate in parts c and d:

a) Determine s on the transmission line of Fig. 13.29. Note that the dielectric is air: The reflection
coefficient at the load is

	L = 40 + j30 − 50

40 + j30 + 50
= j0.333 = 0.333� 1.57 rad Then s = 1 + .333

1 − .333
= 2.0

b) Find the input impedance: With the length of the line at 2.7λ, we have βl = (2π)(2.7) = 16.96 rad.
The input impedance is then

Zin = 50

[
(40 + j30) cos(16.96) + j50 sin(16.96)

50 cos(16.96) + j (40 + j30) sin(16.96)

]
= 50

[−1.236 − j5.682

1.308 − j3.804

]
= 61.8 − j37.5 �

c) If ωL = 10 �, find Is : The source drives a total impedance given by Znet = 20 + jωL + Zin =
20+j10+61.8−j37.5 = 81.8−j27.5. The current is now Is = 100/(81.8−j27.5) = 1.10 + j0.37 A.

d) What value of L will produce a maximum value for |Is | at ω = 1 Grad/s? To achieve this, the imaginary
part of the total impedance of part c must be reduced to zero (so we need an inductor). The inductor
impedance must be equal to negative the imaginary part of the line input impedance, or ωL = 37.5, so
that L = 37.5/ω = 37.5 nH. Continuing, for this value of L, calculate the average power:

e) supplied by the source: Ps = (1/2)Re{VsIs} = (1/2)(100)2/(81.8) = 61.1 W.

f) delivered to ZL = 40+ j30 �: The power delivered to the load will be the same as the power delivered
to the input impedance. We write

PL = 1

2
Re{Zin}|Is |2 = 1

2
(61.8)(1.22)2 = 46.1 W

224



13.21. A lossless line having an air dielectric has a characteristic impedance of 400 �. The line is operating
at 200 MHz and Zin = 200 − j200 �. Use analytic methods or the Smith chart (or both) to find: (a)
s; (b) ZL if the line is 1 m long; (c) the distance from the load to the nearest voltage maximum: I will
first use the analytic approach. Using normalized impedances, Eq. (13) becomes

zin = Zin

Z0
=

[
zL cos(βL) + j sin(βL)

cos(βL) + jzL sin(βL)

]
=

[
zL + j tan(βL)

1 + jzL tan(βL)

]

Solve for zL:

zL =
[

zin − j tan(βL)

1 − jzin tan(βL)

]

where, with λ = c/f = 3 × 108/2 × 108 = 1.50 m, we find βL = (2π)(1)/(1.50) = 4.19, and so
tan(βL) = 1.73. Also, zin = (200 − j200)/400 = 0.5 − j0.5. So

zL = 0.5 − j0.5 − j1.73

1 − j (0.5 − j0.5)(1.73)
= 2.61 + j0.174

Finally, ZL = zL(400) = 1.04 × 103 + j69.8 �. Next

	 = ZL − Z0

ZL + Z0
= 6.42 × 102 + j69.8

1.44 × 103 + j69.8
= .446 + j2.68 × 10−2 = .447� 6.0 × 10−2 rad

Now

s = 1 + |	|
1 − |	| = 1 + .447

1 − .447
= 2.62

Finally

zmax = − φ

2β
= −λφ

4π
= − (6.0 × 10−2)(1.50)

4π
= −7.2 × 10−3 m = −7.2 mm

We next solve the problem using the Smith chart. Referring to the figure on the next page, we first locate
and mark the normalized input impedance, zin = 0.5 − j0.5. A line drawn from the origin through
this point intersects the outer chart boundary at the position 0.0881 λ on the wavelengths toward load
(WTL) scale. With a wavelength of 1.5 m, the 1 meter line is 0.6667 wavelengths long. On the
WTL scale, we add 0.6667λ, or equivalently, 0.1667λ (since 0.5λ is once around the chart), obtaining
(0.0881+0.1667)λ) = 0.2548λ, which is the position of the load. A straight line is now drawn from the
origin though the 0.2548λ position. A compass is then used to measure the distance between the origin
and zin. With this distance set, the compass is then used to scribe off the same distance from the origin
to the load impedance, along the line between the origin and the 0.2548λ position. That point is the
normalized load impedance, which is read to be zL = 2.6+j0.18. Thus ZL = zL(400) = 1040+j72.
This is in reasonable agreement with the analytic result of 1040 + j69.8. The difference in imaginary
parts arises from uncertainty in reading the chart in that region.

In transforming from the input to the load positions, we cross the r > 1 real axis of the chart at r=2.6.
This is close to the value of the VSWR, as we found earlier. We also see that the r > 1 real axis (at
which the first Vmax occurs) is a distance of 0.0048λ (marked as .005λ on the chart) in front of the load.
The actual distance is zmax = −0.0048(1.5) m = −0.0072 m = −7.2 mm.
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13.22. A lossless two-wire line has a characteristic impedance of 300 � and a capacitance of 15 pF/m. The
load at z = 0 consists of a 600-� resistor in parallel with a 10-pF capacitor. If ω = 108 rad/s and the
line is 20m long, use the Smith chart to find a) |	L|; b) s; c) Zin. First, the wavelength on the line is
found using λ = 2πvp/ω, where vp = 1/(CZ0). Assuming higher accuracy in the given values than
originally stated, we obtain

λ = 2π

ωCZ0
= 2π

(108)(15 × 10−12)(300)
= 13.96 m

The line length in wavelengths is therefore 20/13.96 = 1.433λ. The normalized load admittance is
now

yL = YLZ0 = Z0

[
1

RL

+ jωC

]
= 300

[
1

600
+ j (108)(10−11)

]
= 0.50 + j0.30
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The yL value is plotted on the chart and labeled as yL. Next, yL is inverted to find zL by transforming
the point halfway around the chart, using the compass and a straight edge. The result, labeled zL on the
chart is read to be zL = 1.5−j0.87. This is close to the computed inverse of yL, which is 1.47−j0.88.
Scribing the compass arc length along the bottom scale for reflection coefficient yields |	L| = 0.38.
The VSWR is found by scribing the compass arc length either along the bottom SWR scale or along
the positive real axis of the chart, both methods yielding s = 2.2.

Now, the position of zL is read on the outer edge of the chart as 0.308λ on the WTG scale. The point is
now transformed through the line length distance of 1.433λ toward the generator (the net chart distance
will be 0.433λ, since a full wavelength is two complete revolutions). The final reading on the WTG
scale after the transformation is found through (0.308 + 0.433 − 0.500)λ = 0.241λ. Drawing a line
between this mark on the WTG scale and the chart center, and scribing the compass arc length on this
line, yields the normalized input impedance. This is read as zin = 2.2 + j0.21 (the computed value
found through the analytic solution is zin = 2.21 + j0.219. The input impedance is now found by
multiplying the chart reading by 300, or Zin = 660 + j63 �.
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13.23. The normalized load on a lossless transmission line is zL = 2+j1. Let l = 20 m (there was a missprint
in the problem statement, since λ = 20 m should have been stated. I will specify answers in terms of
wavelength). Make use of the Smith chart to find:

a) the shortest distance from the load to the point at which zin = rin + j0, where rin > 1 (not greater
than 0 as stated): Referring to the figure below, we start by marking the given zL on the chart and
drawing a line from the origin through this point to the outer boundary. On the WTG scale, we
read the zL location as 0.213λ. Moving from here toward the generator, we cross the positive 	R

axis (at which the impedance is purely real and greater than 1) at 0.250λ. The distance is then
(0.250 − 0.213)λ = 0.037λ from the load. If we use λ = 20 m, the actual distance would be
20(0.037) = 0.74 m.

b) Find zin at the point found in part a: Using a compass, we set its radius at the distance between
the origin and zL. We then scribe this distance along the real axis to find zin = rin = 2.61.

c) The line is cut at this point and the portion containing zL is thrown away. A resistor r = rin of
part a is connected across the line. What is s on the remainder of the line? This will be just s

for the line as it was before. As we know, s will be the positive real axis value of the normalized
impedance, or s = 2.61.

d) What is the shortest distance from this resistor to a point at which zin = 2 + j1? This would
return us to the original point, requiring a complete circle around the chart (one-half wavelength
distance). The distance from the resistor will therefore be: d = 0.500 λ − 0.037 λ = 0.463 λ.
With λ = 20 m, the actual distance would be 20(0.463) = 9.26 m.
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13.24. With the aid of the Smith chart, plot a curve of |Zin| vs. l for the transmission line shown in Fig. 13.30.
Cover the range 0 < l/λ < 0.25. The required input impedance is that at the actual line input (to the
left of the two 20� resistors. The input to the line section occurs just to the right of the 20� resistors,
and the input impedance there we first find with the Smith chart. This impedance is in series with the
two 20� resistors, so we add 40� to the calculated impedance from the Smith chart to find the net
line input impedance. To begin, the 20� load resistor represents a normalized impedance of zl = 0.4,
which we mark on the chart (see below). Then, using a compass, draw a circle beginning at zL and
progressing clockwise to the positive real axis. The circle traces the locus of zin values for line lengths
over the range 0 < l < λ/4.

On the chart, radial lines are drawn at positions corresponding to .025λ increments on the WTG scale.
The intersections of the lines and the circle give a total of 11 zin values. To these we add normalized
impedance of 40/50 = 0.8 to add the effect of the 40� resistors and obtain the normalized impedance
at the line input. The magnitudes of these values are then found, and the results are multiplied by 50�.
The table below summarizes the results.

l/λ zinl (to right of 40�) zin = zinl + 0.8 |Zin| = 50|zin|
0 0.40 1.20 60

.025 0.41 + j.13 1.21 + j.13 61

.050 0.43 + j.27 1.23 + j.27 63

.075 0.48 + j.41 1.28 + j.41 67

.100 0.56 + j.57 1.36 + j.57 74

.125 0.68 + j.73 1.48 + j.73 83

.150 0.90 + j.90 1.70 + j.90 96

.175 1.20 + j1.05 2.00 + j1.05 113

.200 1.65 + j1.05 2.45 + j1.05 134

.225 2.2 + j.7 3.0 + j.7 154

.250 2.5 3.3 165
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13.24. (continued) As a check, the line input input impedance can be found analytically through

Zin = 40 + 50

[
20 cos(2πl/λ) + j50 sin(2πl/λ)

50 cos(2πl/λ) + j20 sin(2πl/λ)

]
= 50

[
60 cos(2πl/λ) + j66 sin(2πl/λ)

50 cos(2πl/λ) + j20 sin(2πl/λ)

]

from which

|Zin| = 50

[
36 cos2(2πl/λ) + 43.6 sin2(2πl/λ)

25 cos2(2πl/λ) + 4 sin2(2πl/λ)

]1/2

This function is plotted below along with the results obtained from the Smith chart. A fairly good
comparison is obtained.
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13.25. A 300-ohm transmission line is short-circuited at z = 0. A voltage maximum, |V |max = 10 V, is found
at z = −25 cm, and the minimum voltage, |V |min = 0, is found at z = −50 cm. Use the Smith chart
to find ZL (with the short circuit replaced by the load) if the voltage readings are:

a) |V |max = 12 V at z = −5 cm, and vertV |min = 5 V: First, we know that the maximum and
minimum voltages are spaced by λ/4. Since this distance is given as 25 cm, we see that λ = 100
cm = 1 m. Thus the maximum voltage location is 5/100 = 0.05λ in front of the load. The standing
wave ratio is s = |V |max/|V |min = 12/5 = 2.4. We mark this on the positive real axis of the
chart (see next page). The load position is now 0.05 wavelengths toward the load from the |V |max

position, or at 0.30 λ on the WTL scale. A line is drawn from the origin through this point on the
chart, as shown. We next set the compass to the distance between the origin and the z = r = 2.4
point on the real axis. We then scribe this same distance along the line drawn through the .30 λ

position. The intersection is the value of zL, which we read as zL = 1.65 + j.97. The actual load
impedance is then ZL = 300zL = 495 + j290 �.

b) |V |max = 17 V at z = −20 cm, and |V |min = 0. In this case the standing wave ratio is infinite,
which puts the starting point on the r → ∞ point on the chart. The distance of 20 cm corresponds
to 20/100 = 0.20 λ, placing the load position at 0.45 λ on the WTL scale. A line is drawn
from the origin through this location on the chart. An infinite standing wave ratio places us on
the outer boundary of the chart, so we read zL = j0.327 at the 0.45 λ WTL position. Thus
ZL = j300(0.327)

.= j98 �.
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13.26. A lossless 50� transmission line operates with a velocity that is 3/4c. A load, ZL = 60 + j30 � is
located at z = 0. Use the Smith chart to find:

a) s: First we find the normalized load impedance, zL = (60 + j30)/50 = 1.2 + j0.6, which is then
marked on the chart (see below). Drawing a line from the chart center through this point yields its
location at 0.328λ on the WTL scale. The distance from the origin to the load impedance point is
now set on the compass; the standing wave ratio is then found by scribing this distance along the
positive real axis, yielding s = 1.76, as shown. Alternately, use the s scale at the bottom of the
chart, setting the compass point at the center, and scribing the distance on the scale to the left.

b) the distance from the load to the nearest voltage minimum if f = 300 MHz: This distance is
found by transforming the load impedance clockwise around the chart until the negative real axis
is reached. This distance in wavelengths is just the load position on the WTL scale, since the
starting point for this scale is the negative real axis. So the distance is 0.328λ. The wavelength is

λ = v

f
= (3/4)c

300MHz
= 3(3 × 108)

4(3 × 108)
= 0.75 m

So the actual distance to the first voltage minimum is dmin = 0.328(0.75) m = 24.6 cm.

c) the input impedance if f = 200 MHz and the input is at z = −110cm: The wavelength at this
frequency is λ = (3/4)(3 × 108)/(2 × 108) = 1.125 m. The distance to the input in wavelengths
is then din = (1.10)/(1.125) = 0.9778λ. Transforming the load through this distance toward
the generator involves revolution once around the chart (0.500λ) plus the remainder of 0.4778λ,
which leads to a final position of 0.1498λ

.= 0.150λ on the WTG scale, or 0.350λ on the WTL
scale. A line is drawn between this point and the chart center. Scribing the compass arc length
through this line yields the normalized input impedance, read as zin = 1.03 + j0.56. The actual
input impedance is Zin = zin × 50 = 51.5 + j28.0 �.
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13.27. The characteristic admittance (Y0 = 1/Z0) of a lossless transmission line is 20 mS. The line is terminated
in a load YL = 40 − j20 mS. Make use of the Smith chart to find:

a) s: We first find the normalized load admittance, which is yL = YL/Y0 = 2 − j1. This is plotted
on the Smith chart below. We then set on the compass the distance between yL and the origin.
The same distance is then scribed along the positive real axis, and the value of s is read as 2.6.

b) Yin if l = 0.15 λ: First we draw a line from the origin through zL and note its intersection with
the WTG scale on the chart outer boundary. We note a reading on that scale of about 0.287 λ. To
this we add 0.15 λ, obtaining about 0.437 λ, which we then mark on the chart (0.287 λ is not the
precise value, but I have added 0.15 λ to that mark to obtain the point shown on the chart that is
near to 0.437 λ. This “eyeballing” method increases the accuracy a little). A line drawn from the
0.437 λ position on the WTG scale to the origin passes through the input admittance. Using the
compass, we scribe the distance found in part a across this line to find yin = 0.56 − j0.35, or
Yin = 20yin = 11 − j7.0 mS.

c) the distance in wavelengths from YL to the nearest voltage maximum: On the admittance chart,
the Vmax position is on the negative 	r axis. This is at the zero position on the WTL scale. The
load is at the approximate 0.213 λ point on the WTL scale, so this distance is the one we want.
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13.28. The wavelength on a certain lossless line is 10cm. If the normalized input impedance is zin = 1 + j2,
use the Smith chart to determine:

a) s: We begin by marking zin on the chart (see below), and setting the compass at its distance from
the origin. We then use the compass at that setting to scribe a mark on the positive real axis, noting
the value there of s = 5.8.

b) zL, if the length of the line is 12 cm: First, use a straight edge to draw a line from the origin through
zin, and through the outer scale. We read the input location as slightly more than 0.312λ on the
WTL scale (this additional distance beyond the .312 mark is not measured, but is instead used to
add a similar distance when the impedance is transformed). The line length of 12cm corresponds to
1.2 wavelengths. Thus, to transform to the load, we go counter-clockwise twice around the chart,
plus 0.2λ, finally arriving at (again) slightly more than 0.012λ on the WTL scale. A line is drawn
to the origin from that position, and the compass (with its previous setting) is scribed through the
line. The intersection is the normalized load impedance, which we read as zL = 0.173 − j0.078.

c) xL, if zL = 2 + jxL, where xL > 0. For this, use the compass at its original setting to scribe
through the r = 2 circle in the upper half plane. At that point we read xL = 2.62.
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13.29. A standing wave ratio of 2.5 exists on a lossless 60 � line. Probe measurements locate a voltage
minimum on the line whose location is marked by a small scratch on the line. When the load is replaced
by a short circuit, the minima are 25 cm apart, and one minimum is located at a point 7 cm toward the
source from the scratch. Find ZL: We note first that the 25 cm separation between minima imply a
wavelength of twice that, or λ = 50 cm. Suppose that the scratch locates the first voltage minimum.
With the short in place, the first minimum occurs at the load, and the second at 25 cm in front of the load.
The effect of replacing the short with the load is to move the minimum at 25 cm to a new location 7 cm
toward the load, or at 18 cm. This is a possible location for the scratch, which would otherwise occur at
multiples of a half-wavelength farther away from that point, toward the generator. Our assumed scratch
position will be 18 cm or 18/50 = 0.36 wavelengths from the load. Using the Smith chart (see below)
we first draw a line from the origin through the 0.36λ point on the wavelengths toward load scale. We
set the compass to the length corresponding to the s = r = 2.5 point on the chart, and then scribe this
distance through the straight line. We read zL = 0.79 + j0.825, from which ZL = 47.4 + j49.5 �.
As a check, I will do the problem analytically. First, we use

zmin = −18 cm = − 1

2β
(φ + π) ⇒ φ =

[
4(18)

50
− 1

]
π = 1.382 rad = 79.2◦

Now

|	L| = s − 1

s + 1
= 2.5 − 1

2.5 + 1
= 0.4286

and so 	L = 0.4286� 1.382. Using this, we find

zL = 1 + 	L

1 − 	L

= 0.798 + j0.823

and thus ZL = zL(60) = 47.8 + j49.3 �.
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13.30. A 2-wire line, constructed of lossless wire of circular cross-section is gradually flared into a coupling
loop that looks like an egg beater. At the point X, indicated by the arrow in Fig. 13.31, a short circuit
is placed across the line. A probe is moved along the line and indicates that the first voltage minimum
to the left of X is 16cm from X. With the short circuit removed, a voltage minimum is found 5cm to
the left of X, and a voltage maximum is located that is 3 times voltage of the minimum. Use the Smith
chart to determine:

a) f : No Smith chart is needed to find f , since we know that the first voltage minimum in front of
a short circuit is one-half wavelength away. Therefore, λ = 2(16) = 32cm, and (assuming an
air-filled line), f = c/λ = 3 × 108/0.32 = 0.938 GHz.

b) s: Again, no Smith chart is needed, since s is the ratio of the maximum to the minimum voltage
amplitudes. Since we are given that Vmax = 3Vmin, we find s = 3.

c) the normalized input impedance of the egg beater as seen looking the right at point X: Now we
need the chart. From the figure below, s = 3 is marked on the positive real axis, which determines
the compass radius setting. This point is then transformed, using the compass, to the negative real
axis, which corresponds to the location of a voltage minimum. Since the first Vmin is 5cm in front
of X, this corresponds to (5/32)λ = 0.1563λ to the left of X. On the chart, we now move this
distance from the Vmin location toward the load, using the WTL scale. A line is drawn from the
origin through the 0.1563λ mark on the WTL scale, and the compass is used to scribe the original
radius through this line. The intersection is the normalized input impedance, which is read as
zin = 0.86 − j1.06.
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13.31. In order to compare the relative sharpness of the maxima and minima of a standing wave, assume a
load zL = 4 + j0 is located at z = 0. Let |V |min = 1 and λ = 1 m. Determine the width of the

a) minimum, where |V | < 1.1: We begin with the general phasor voltage in the line:

V (z) = V +(e−jβz + 	ejβz)

With zL = 4+j0, we recognize the real part as the standing wave ratio. Since the load impedance
is real, the reflection coefficient is also real, and so we write

	 = |	| = s − 1

s + 1
= 4 − 1

4 + 1
= 0.6

The voltage magnitude is then

|V (z)| =
√

V (z)V ∗(z) = V +
[
(e−jβz + 	ejβz)(ejβz + 	e−jβz)

]1/2

= V +
[
1 + 2	 cos(2βz) + 	2

]1/2

Note that with cos(2βz) = ±1, we obtain |V | = V +(1 ± 	) as expected. With s = 4 and
with |V |min = 1, we find |V |max = 4. Then with 	 = 0.6, it follows that V + = 2.5. The net
expression for |V (z)| is then

V (z) = 2.5
√

1.36 + 1.2 cos(2βz)

To find the width in z of the voltage minimum, defined as |V | < 1.1, we set |V (z)| = 1.1 and
solve for z: We find

(
1.1

2.5

)2

= 1.36 + 1.2 cos(2βz) ⇒ 2βz = cos−1(−0.9726)

Thus 2βz = 2.904. At this stage, we note the the |V |min point will occur at 2βz = π . We therefore
compute the range, �z, over which |V | < 1.1 through the equation:

2β(�z) = 2(π − 2.904) ⇒ �z = π − 2.904

2π/1
= 0.0378 m = 3.8 cm

where λ = 1 m has been used.

b) Determine the width of the maximum, where |V | > 4/1.1: We use the same equation for |V (z)|,
which in this case reads:

4/1.1 = 2.5
√

1.36 + 1.2 cos(2βz) ⇒ cos(2βz) = 0.6298

Since the maximum corresponds to 2βz = 0, we find the range through

2β�z = 2 cos−1(0.6298) ⇒ �z = 0.8896

2π/1
= 0.142 m = 14.2 cm
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13.32. A lossless line is operating with Z0 = 40 �, f = 20 MHz, and β = 7.5π rad/m. With a short circuit
replacing the load, a minimum is found at a point on the line marked by a small spot of puce paint.
With the load installed, it is found that s = 1.5 and a voltage minimum is located 1m toward the source
from the puce dot.

a) Find ZL: First, the wavelength is given by λ = 2π/β = 2/7.5 = 0.2667m. The 1m distance
is therefore 3.75λ. With the short installed, the Vmin positions will be at multiples of λ/2 to the
left of the short. Therefore, with the actual load installed, the Vmin position as stated would be
3.75λ + nλ/2, which means that a maximum voltage occurs at the load. This being the case, the
normalized load impedance will lie on the positive real axis of the Smith chart, and will be equal
to the standing wave ratio. Therefore, ZL = 40(1.5) = 60 �.

b) What load would produce s = 1.5 with |V |max at the paint spot? With |V |max at the paint spot
and with the spot an integer multiple of λ/2 to the left of the load, |V |max must also occur at the
load. The answer is therefore the same as part a, or ZL = 60 �.

13.33. In Fig. 13.14, let ZL = 40 − j10 �, Z0 = 50 �, f = 800 MHz, and v = c.

a) Find the shortest length, d1, of a short-circuited stub, and the shortest distance d that it may be
located from the load to provide a perfect match on the main line to the left of the stub: The Smith
chart construction is shown on the next page. First we find zL = (40 − j10)/50 = 0.8 − j0.2
and plot it on the chart. Next, we find yL = 1/zL by transforming this point halfway around the
chart, where we read yL = 1.17+ j0.30. This point is to be transformed to a location at which the
real part of the normalized admittance is unity. The g = 1 circle is highlighted on the chart; yL

transforms to two locations on it: yin1 = 1 − j0.32 and yin2 = 1 + j0.32. The stub is connected
at either of these two points. The stub input admittance must cancel the imaginary part of the line
admittance at that point. If yin2 is chosen, the stub must have input admittance of −j0.32. This
point is marked on the outer circle and occurs at 0.452 λ on the WTG scale. The length of the stub
is found by computing the distance between its input, found above, and the short-circuit position
(stub load end), marked as Psc. This distance is d1 = (0.452−0.250)λ = 0.202 λ. With f = 800
MHz and v = c, the wavelength is λ = (3×108)/(8×108) = 0.375 m. The distance is thus d1 =
(0.202)(0.375) = 0.758 m = 7.6 cm. This is the shortest of the two possible stub lengths, since
if we had used yin1, we would have needed a stub input admittance of +j0.32, which would have
required a longer stub length to realize. The length of the main line between its load and the stub
attachment point is found on the chart by measuring the distance between yL and yin2, in moving
clockwise (toward generator). This distance will be d = [0.500 − (0.178 − 0.138)] λ = 0.46 λ.
The actual length is then d = (0.46)(0.375) = 0.173m = 17.3 cm.
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13.33b) Repeat for an open-circuited stub: In this case, everything is the same, except for the load-end position
of the stub, which now occurs at the Poc point on the chart. To use the shortest possible stub, we need to
use yin1 = 1 − j0.32, requiring ys = +j0.32. We find the stub length by moving from Poc to the point
at which the admittance is j0.32. This occurs at 0.048 λ on the WTG scale, which thus determines the
required stub length. Now d1 = (0.048)(0.375) = 0.18 m = 1.8 cm. The attachment point is found by
transforming yL to yin1, where the former point is located at 0.178 λ on the WTG scale, and the latter is
at 0.362 λ on the same scale. The distance is then d = (0.362 − 0.178)λ = 0.184λ. The actual length
is d = (0.184)(0.375) = 0.069 m = 6.9 cm.
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13.34. The lossless line shown in Fig. 13.32 is operating with λ = 100cm. If d1 = 10cm, d = 25cm, and
the line is matched to the left of the stub, what is ZL? For the line to be matched, it is required that
the sum of the normalized input admittances of the shorted stub and the main line at the point where
the stub is connected be unity. So the input susceptances of the two lines must cancel. To find the stub
input susceptance, use the Smith chart to transform the short circuit point 0.1λ toward the generator,
and read the input value as bs = −1.37 (note that the stub length is one-tenth of a wavelength). The
main line input admittance must now be yin = 1 + j1.37. This line is one-quarter wavelength long, so
the normalized load impedance is equal to the normalized input admittance. Thus zL = 1 + j1.37, so
that ZL = 300zL = 300 + j411 �.
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13.35. A load, ZL = 25 + j75 �, is located at z = 0 on a lossless two-wire line for which Z0 = 50 � and
v = c.

a) If f = 300 MHz, find the shortest distance d (z = −d) at which the input impedance has a real part
equal to 1/Z0 and a negative imaginary part: The Smith chart construction is shown below. We
begin by calculating zL = (25 + j75)/50 = 0.5 + j1.5, which we then locate on the chart. Next,
this point is transformed by rotation halfway around the chart to find yL = 1/zL = 0.20 − j0.60,
which is located at 0.088 λ on the WTL scale. This point is then transformed toward the generator
until it intersects the g = 1 circle (shown highlighted) with a negative imaginary part. This occurs
at point yin = 1.0 − j2.23, located at 0.308 λ on the WTG scale. The total distance between load
and input is then d = (0.088 + 0.308)λ = 0.396λ. At 300 MHz, and with v = c, the wavelength
is λ = 1 m. Thus the distance is d = 0.396 m = 39.6 cm.

b) What value of capacitance C should be connected across the line at that point to provide unity stand-
ing wave ratio on the remaining portion of the line? To cancel the input normalized susceptance
of -2.23, we need a capacitive normalized susceptance of +2.23. We therefore write

ωC = 2.23

Z0
⇒ C = 2.23

(50)(2π × 3 × 108)
= 2.4 × 10−11 F = 24 pF
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13.36. The two-wire lines shown in Fig. 13.33 are all lossless and have Z0 = 200 �. Find d and the
shortest possible value for d1 to provide a matched load if λ = 100cm. In this case, we have a series
combination of the loaded line section and the shorted stub, so we use impedances and the Smith chart
as an impedance diagram. The requirement for matching is that the total normalized impedance at the
junction (consisting of the sum of the input impedances to the stub and main loaded section) is unity.
First, we find zL = 100/200 = 0.5 and mark this on the chart (see below). We then transform this point
toward the generator until we reach the r = 1 circle. This happens at two possible points, indicated
as zin1 = 1 + j.71 and zin2 = 1 − j.71. The stub input impedance must cancel the imaginary part of
the loaded section input impedance, or zins = ±j.71. The shortest stub length that accomplishes this
is found by transforming the short circuit point on the chart to the point zins = +j0.71, which yields
a stub length of d1 = .098λ = 9.8 cm. The length of the loaded section is then found by transforming
zL = 0.5 to the point zin2 = 1−j.71, so that zins +zin2 = 1, as required. This transformation distance
is d = 0.347λ = 37.7 cm.
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13.37. In the transmission line of Fig. 13.17, RL = Z0 = 50 �. Determine and plot the voltage at the
load resistor and the current in the battery as functions of time by constructing appropriate voltage and
current reflection diagrams: Referring to the figure, closing the switch launches a voltage wave whose
value is given by Eq. (50):

V +
1 = V0Z0

Rg + Z0
= 50

75
V0 = 2

3
V0

We note that 	L = 0, since the load impedance is matched to that of the line. So the voltage wave
traverses the line and does not reflect. The voltage reflection diagram would be that shown in Fig.
13.18a, except that no waves are present after time t = l/v. Likewise, the current reflection diagram
is that of Fig. 13.19a, except, again, no waves exist after t = l/v. The voltage at the load will be just
V +

1 = (2/3)V0 for times beyond l/v. The current through the battery is found through

I+
1 = V +

1

Z0
= V0

75
A

This current initiates at t = 0, and continues indefinitely.

13.38. Repeat Problem 37, with Z0 = 50�, and RL = Rg = 25�. Carry out the analysis for the time period
0 < t < 8l/v. At the generator end, we have 	g = −1/3, as before. The difference is at the load
end, where 	L = −1/3, whereas in Problem 37, the load was matched. The initial wave, as in the last
problem, is of magnitude V + = (2/3)V0. Using these values, voltage and current reflection diagrams
are constructed, and are shown below:
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13.38. (continued) From the diagrams, voltage and current plots are constructed. First, the load voltage is
found by adding voltages along the right side of the voltage diagram at the indicated times. Second,
the current through the battery is found by adding currents along the left side of the current reflection
diagram. Both plots are shown below, where currents and voltages are expressed to three significant
figures. The steady state values, VL = 0.5V and IB = 0.02A, are expected as t → ∞.

13.39. In the transmission line of Fig. 13.17, Z0 = 50 � and RL = Rg = 25 �. The switch is closed at t = 0
and is opened again at time t = l/4v, thus creating a rectangular voltage pulse in the line. Construct an
appropriate voltage reflection diagram for this case and use it to make a plot of the voltage at the load
resistor as a function of time for 0 < t < 8l/v (note that the effect of opening the switch is to initiate a
second voltage wave, whose value is such that it leaves a net current of zero in its wake): The value of
the initial voltage wave, formed by closing the switch, will be

V + = Z0

Rg + Z0
V0 = 50

25 + 50
V0 = 2

3
V0

On opening the switch, a second wave, V +′, is generated which leaves a net current behind it of zero.
This means that V +′ = −V + = −(2/3)V0. Note also that when the switch is opened, the reflection
coefficient at the generator end of the line becomes unity. The reflection coefficient at the load end is
	L = (25 − 50)/(25 + 50) = −(1/3). The reflection diagram is now constructed in the usual manner,
and is shown on the next page. The path of the second wave as it reflects from either end is shown in
dashed lines, and is a replica of the first wave path, displaced later in time by l/(4v).a All values for
the second wave after each reflection are equal but of opposite sign to the immediately preceding first
wave values. The load voltage as a function of time is found by accumulating voltage values as they are
read moving up along the right hand boundary of the chart. The resulting function, plotted just below
the reflection diagram, is found to be a sequence of pulses that alternate signs. The pulse amplitudes
are calculated as follows:
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13.39. (continued)

l

v
< t <

5l

4v
: V1 =

(
1 − 1

3

)
V + = 0.44 V0

3l

v
< t <

13l

4v
: V2 = −1

3

(
1 − 1

3

)
V + = −0.15 V0

5l

v
< t <

21l

4v
: V3 =

(
1

3

)2 (
1 − 1

3

)
V + = 0.049 V0

7l

v
< t <

29l

4v
: V4 = −

(
1

3

)3 (
1 − 1

3

)
V + = −0.017 V0
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13.40. In the charged line of Fig. 13.22, the characteristic impedance is Z0 = 100�, and Rg = 300�. The
line is charged to initial voltage V0 = 160 V, and the switch is closed at t = 0. Determine and plot
the voltage and current through the resistor for time 0 < t < 8l/v (four round trips). This problem
accompanies Example 13.6 as the other special case of the basic charged line problem, in which now
Rg > Z0. On closing the switch, the initial voltage wave is

V + = −V0
Z0

Rg + Z0
= −160

100

400
= −40 V

Now, with 	g = 1/2 and 	L = 1, the voltage and current reflection diagrams are constructed as shown
below. Plots of the voltage and current at the resistor are then found by accumulating values from the
left sides of the two charts, producing the plots as shown.
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13.41. In the transmission line of Fig. 13.34, the switch is located midway down the line, and is closed at
t = 0. Construct a voltage reflection diagram for this case, where RL = Z0. Plot the load resistor
voltage as a function of time: With the left half of the line charged to V0, closing the switch initiates
(at the switch location) two voltage waves: The first is of value −V0/2 and propagates toward the left;
the second is of value V0/2 and propagates toward the right. The backward wave reflects at the battery
with 	g = −1. No reflection occurs at the load end, since the load is matched to the line. The reflection
diagram and load voltage plot are shown below. The results are summarized as follows:

0 < t <
l

2v
: VL = 0

l

2v
< t <

3l

2v
: VL = V0

2

t >
3l

2v
: VL = V0
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13.42. A simple frozen wave generator is shown in Fig. 13.35. Both switches are closed simultaneously at
t = 0. Construct an appropriate voltage reflection diagram for the case in which RL = Z0. Determine
and plot the load voltage as a function of time: Closing the switches sets up a total of four voltage waves
as shown in the diagram below. Note that the first and second waves from the left are of magnitude V0,
since in fact we are superimposing voltage waves from the −V0 and +V0 charged sections acting alone.
The reflection diagram is drawn and is used to construct the load voltage with time by accumulating
voltages up the right hand vertical axis.
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